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Wavelets in time-series analysis
By Guy P. Nason1 and Rainer von Sachs2

1Department of Mathematics, University of Bristol,
University Walk, Bristol BS8 1TW, UK

2Institute of Statistics, Catholic University of Louvain,
Louvain-la-Neuve, Belgium

This article reviews the role of wavelets in statistical time-series analysis. We survey
work that emphasizes scale, such as estimation of variance, and the scale exponent of
processes with a specific scale behaviour, such as 1/f processes. We present some of
our own work on locally stationary wavelet (LSW) processes, which model both sta-
tionary and some kinds of non-stationary processes. Analysis of time-series assuming
the LSW model permits identification of an evolutionary wavelet spectrum (EWS)
that quantifies the variation in a time-series over a particular scale and at a particu-
lar time. We address estimation of the EWS and show how our methodology reveals
phenomena of interest in an infant electrocardiogram series.

Keywords: Allan variance; locally stationary time-series; long-memory processes;
time-scale analysis; wavelet processes; wavelet spectrum

1. Introduction

Reviewing the role of wavelets in statistical time-series analysis (TSA) appears to be
quite an impossible task. For one thing, wavelets have become so popular that such
a review could never be exhaustive. Another, more pertinent, reason is that there
is no such thing as one statistical time-series analysis, as the very many different
fields encompassed by TSA are, in fact, so different that the choice of a particular
methodology must naturally vary from area to area. Examples for this are numer-
ous: think about the fundamentally different goals of treating comparatively short
correlated biomedical time-series to explain, for example, the impact of a set of
explanatory variables on a response variable, or of analysing huge inhomogeneous
datasets in sound, speech or electrical engineering, or, finally, building models for a
better understanding and possibly prediction of financial time-series data.
Hence, here we can only touch upon some aspects of where and why it can be

advantageous to use wavelet methods in some areas of statistical TSA. We consider
the common situation where the trend and (co-)variation of autocorrelated data are
to be modelled and estimated. Classically, the time-series data are assumed to be
stationary : their characterizing quantities behave homogeneously over time. Later
in this paper, we shall consider situations where some controlled deviation from
stationarity is allowed.
We stress that this article does not provide an exhaustive review of this area. In

particular, we shall not go into detail concerning the time-series aspects of wavelet
denoising, nor the role of wavelets in deterministic time-series, but briefly summa-
rize these next. Later on, we shall concentrate on seeing how wavelets can provide
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information about the scale behaviour of a series: i.e. what is happening at different
scales in the series. This type of analysis, as opposed to a frequency analysis, can
be appropriate for certain types of time-series as well as provide interpretable and
insightful information that is easy to convey to the non-specialist.

Wavelet denoising. Silverman (this issue) and Johnstone (this issue) describe the
method and rationale behind wavelet shrinkage, a general technique for curve denois-
ing problems. The specific connection with the analysis of correlated time-series data
{Yt} is that in a general regression-like model,

Yt = m(Xt) + σ(Xt)εt, t = 1, . . . , T,

non-parametric estimation of the trend function m and/or the function σ, which
measures the variability of the data, can be performed in exactly the same framework
of nonlinear wavelet shrinkage as for the original simple situation of Gaussian i.i.d.
data (see Silverman, this issue). In typical biomedical applications, the errors (and,
hence, the Yt themselves) need be neither uncorrelated nor even stationary (for one
example, in the case of a deterministic equidistant design, {Xt} = {t/T} (see von
Sachs & MacGibbon 1998)). In financial time-series analysis, where the choice of
{Xt} = {(Yt−1, . . . , Yt−p)} leads to a non-parametric autoregressive model (of order
p), the task is estimation of a conditional mean and variance under the assumption
of heteroscedastic stationary errors (see, for example, Hoffmann (1999) for the case
p = 1). Both examples, but particularly the second one, call for localized methods
of estimation. Problems of this sort typically show regimes of comparatively smooth
behaviour, which, from time to time, may be disrupted by break points or other
discontinuities. A subordinate task would then be to detect and estimate the precise
location of these break points, and here wavelet methods again prove useful. Finally,
for this little review, we mention that wavelet shrinkage can be used for the estimation
of spectral densities of stationary time-series (Neumann 1996; Gao 1997) and of time-
varying spectra using localized periodogram-based estimators (von Sachs & Schneider
1996; Neumann & von Sachs 1997).

Deterministic time-series. A completely different use of wavelets in statistical time-
series analysis was motivated by how wavelets originally entered the field of (deter-
ministic) time–frequency analysis (see, for example, Rioul & Vetterli 1991; or Flan-
drin 1998). Here, wavelets, being time-scale representation methods, deliver a tool
complementary to both classical and localized (e.g. windowed) Fourier analyses. We
will focus next on this aspect for stochastic signals.

Stochastic time-series. Recently, the search for localized time-scale representations
of stochastic correlated signals led to both analysing and synthesizing (i.e. mod-
elling) mainly non-stationary processes with wavelets or wavelet-like bases. By non-
stationarity we mean here two different types of deviation from stationarity: first,
but not foremost, we will address, in § 2, wavelet analyses of certain long-memory
processes that show a specific (global or local) scale behaviour, including the well-
known 1/f (or power law) processes. However, our main emphasis is on signals with a
possibly time-changing probability distribution or characterizing quantities. Overall,
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from the modelling point of view, wavelets offer clear advantages mainly for the two
types of non-stationary data mentioned above.
Statistical time-scale analysis performs a statistical wavelet spectral analysis of

time-series analogous to the classical Fourier spectral analysis, where the second-
order structure of the series such as variance, autocovariance (dependence structure
within the series) and spectral densities are to be estimated (see Priestley 1981). The
analyses depend fundamentally on processes possessing a representation in terms of
random coefficients with respect to some localizing basis: in classical spectral analysis,
the Fourier basis, which is perfectly localized in frequency; in time-scale analysis, a
basis that is localized in time and scale. Then, the respective second-order quantities
of interest (e.g. variance or autocovariance) can be represented by a superposition
of the (Fourier or the wavelet) spectra. Our specific model, in § 3 b, uses a particular
set of basis functions: discrete non-decimated wavelets.
However, before turning to scale- and time-localized models, the next section

reviews the basic ideas about using wavelets for the analysis of statistical phenomena
with characteristic behaviour living on certain global scales. For example, a variance
decomposition on a scale-by-scale basis has considerable appeal to scientists who
think about physical phenomena in terms of variation operating over a range of dif-
ferent scales (a classical example being 1/f processes). We will review a very simple
example to demonstrate how insights from analysis can be used to derive models for
the synthesis of stochastic processes.
Both in analysis and synthesis it is, of course, possible to localize these scale-

specific phenomena in time as well. For the specific example of 1/f processes, we
refer to Gonçalvès & Flandrin (1993) and more recent work of, for example, Wang et
al . (1997), and the overview on wavelet analysis, estimation and synthesis of scaling
data by Abry et al . (1999). The common paradigm of all these approaches is the
separation of the scale on which the process data are sampled from the scale(s)
where the respective behaviour is observed.

2. Estimation of ‘global’ scale behaviour

This section gives examples on estimating the scale characteristics of processes that
do not show a location dependency. In fact, we restrict our discussion to the utility
of wavelets for the analysis and synthesis of long-memory processes. We begin with a
brief introduction to scalograms using the example of the Allan variance, originally
developed by Allan (1966) as a time-domain measure of frequency stability in high-
frequency oscillators (McCoy & Walden 1996). Then we turn, more specifically, to
the problem of estimation of the scale exponent of 1/f processes, in the specific case
of fractional Brownian motion (fBm).

(a) Long-memory processes, Allan and wavelet variance

For pedagogical reasons, we will concentrate on Percival & Guttorp (1994), one of
the earlier papers in the vast literature in this field, and also, for a simple exposition,
we will only concentrate on the Haar wavelet although other wavelets may be equally,
if not more, useful.
Consider a stretch of length T of a given zero mean stochastic process {Xt}t∈Z .

The Allan variance σ2
X(τ) at a particular scale τ ∈ Z is a measure of how averages,
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over windows of length τ , change from one period to the next. If

X̄t(τ) =
1
τ

τ−1∑
n=0

Xt−n,

then

σ2
X(τ) :=

1
2E(|X̄t(τ)− X̄t−τ (τ)|2). (2.1)

In order to have a meaningful quantity independent of time t, Xt must be stationary,
or at least have stationary increments of order 1.
In fact, the Allan variance turns out to be proportional to the Haar wavelet vari-

ance, another ‘scale variance’ based on the standard discrete Haar wavelet trans-
form as follows. Let {d̂jk} denote the (empirical) wavelet coefficients of the sig-
nal {Xt}t=0,...,T−1, where we deviate from standard notation in that our scales
j = −1, . . . ,− log2(T ) become more negative the coarser the level of the transform,
and, hence, the location index k runs from 0 to T/2−j − 1. This proportionality
can easily be observed by writing the Haar coefficients as successive averages of the
data with filters 1/

√
2 and −1/√2 (which are the high-pass filter coefficients {gk}

of the Haar transform (see Silverman, this issue)). For example, for j = −1 at scale
τj = 2−j−1 = 1,

d̂−1,k = (1/
√
2)(X2k+1 −X2k), k = 0, . . . , T/2− 1, (2.2)

and it is easy to see that var{d̂−1,k} = σ2
X(1). More generally,

var{d̂jk} = Ed̂2
jk = τjσ

2
X(τj). (2.3)

Motivated by this last equation, an unbiased estimator for the Allan variance, the so-
called ‘non-overlapped’ estimator, is the appropriately normalized sum of the squared
wavelet coefficients:

σ̂2
X(τj) :=

2
T

T/2−j−1∑
k=0

d̂2
jk. (2.4)

This estimator has the property that each datapoint Xt contributes to exactly one
coefficient d̂jk. Again only considering the finest scale, j = −1, formula (2.4) can be
written in terms of the data as

σ̂2
X(1) =

1
T

T/2−1∑
k=0

(X2k+1 −X2k)2.

We observe immediately that one can improve upon the above estimator by sum-
ming over not just T/2 values of these time-series differences but over all T − 1
possible ones. The resulting estimator will clearly have a smaller variance and also
possesses independence with respect to the choice of the origin of the series {Xt}. This
‘maximal-overlap’ estimator, denoted by σ̃2

X(τj), is based on the ‘non-decimated’
(Haar) wavelet transform (NDWT), with wavelet coefficients d̃jk (see the appendix
for a description). The NDWT amounts to a uniform sampling in k instead of the
inclusion of subsampling or decimation in each step of the standard discrete (deci-
mated) wavelet transform (DWT).
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Figure 1. Mean of estimated Allan variances over 1000 simulations of the MA(3) process com-
puted using Haar wavelet variances (see text). The mean of the estimates is shown by the
symbols, the mean plus or minus twice the standard deviation of the estimate is shown by
lines. For the ‘non-overlap’ estimator the symbols are × with solid error lines; for the ‘maxi-
mal-overlap’ estimator the symbols are � and the error lines are dotted. The theoretical values
of the Allan variance at scales 2, 4 and 8 are 3

4 ,
7
8 and

36
128 respectively.

Figure 1 shows an estimator for the Allan variance of the MA(3) process

X
(2)
t = 1

2(εt + εt−1 − εt−2 − εt−3),

with standard Gaussian white noise εt, using both the ‘non-overlap’ and ‘maximal-
overlap’ estimators. This MA process is one of a class that we will meet in § 3. The
figure was produced by simulating 1024 observations from the process and computing
the estimated Allan variance. This simulation procedure was repeated 1000 times
and the figure actually shows the mean of all the estimated Allan variances with
lines showing the accuracy of the estimates. It is clear that the ‘maximal-overlap’
estimator has a smaller variance for a wide range of scales τj . It is clear from the
formula of the MA(3) process that it ‘operates’ over scale 4, and, thus, the Allan
variance at scale 4 (j = −2) is largest in figure 1. Further, the Allan variance indicates
that there is variation at scale 2; this is not surprising because the process formula
clearly links quantities over that scale as well. However, at scale 8 and larger scales,
the process has insignificant variation, and so the Allan variance decays for large
scales. Using (2.3) and the orthogonality of the DWT, it is easy to see that the Allan
variance for standard white noise is

σ2(τj) = 1/τj = 2j+1, j < 0.

More general wavelets could be used in place of Haar in the wavelet variance
estimators given above. In any case, the use of the NDWT will be beneficial as is
clear from the example above.
Why is the concept of a ‘scale variance’ useful at all? The ‘scale variance’ permits

a new decomposition of the process variance which is different (but related) to the
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Figure 2. (a) Realization of an fGn process with very little ‘long memory’. (b) Realization of an
fGn process with evident long memory. In (b) you can ‘see’ a ‘slow oscillation’ underlying the
process.

classical spectral decomposition using the (Fourier) spectral density. That is, suppose
we have a stationary process {Xt}, then we can decompose its total variance var{Xt}
into quantities that measure the fluctuation separately scale by scale:

var{Xt} = 1
2

−1∑
j=−∞

σ2
X(τj) =

∑
j

var{d̃jk}/2τj . (2.5)

Here, on the right-hand side, the scale-dependent quantities play the role of a ‘wavelet
spectrum’ Sj := var{d̃jk}/2τj , which, in the stationary case, is independent of time k.
For white noise, Sj = 2j . We will define a time-dependent wavelet spectrum in (3.4)
for more general non-stationary processes in § 3.
The Allan (or wavelet) variance is of additional interest for the study of long-

memory processes. These are processes in which the autocorrelation of the process
decays at a very slow rate, such that it is possible for effects to persist over long time-
scales (see Beran 1994). Consider a ‘fractional Gaussian noise’ (fGn) process with
self-similarity parameter 1

2 < H < 1, or, more precisely, the first-order increments
{Yt} of an fBm B = BH (with B0 = 0). This process is characterized by having
normally distributed stationary and self-similar increments

Yt :=
Bs+t −Bs

t
∼ Bt −B0

t
∼ |t|H−1B1 ∼ N(0, σ2|t|2H−2)

(see, for example, Abry et al . 1995). Figure 2 shows sample paths for two different
simulated fGn processes. Try and guess which one has the long-memory before you
study the caption!
It can be shown that the Allan variance of {Yt} follows a power law, i.e.

σ2
Y (τ) = L(τ)|τ |2H−2 |τ | 	 t0,

where L(·) is a slowly varying function for τ → ∞. Hence, a plot of log{σ2
Y (τ)}

versus log(τ) (or, more precisely, a least-squares or maximum-likelihood estimate
of this log-linear relationship based on one of the estimators for σ2

Y ) can reveal an
estimator of the parameter H, and, in general, for large enough τ one can observe to
a good approximation a line with slope 2H−2. Here we now see that it can be useful
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to use wavelets other than Haar when investigating a potential relationship because
different wavelets cover slightly different frequency ranges and possess differing phase
behaviour.
Some example applications can be found in Percival & Guttorp (1994) on the

analysis of the scales of variation within vertical ocean shear measurements, which
obey a power-law process over certain ranges. Serroukh et al . (1998) investigate the
wavelet variance of the surface albedo of pack ice, which happens to be a strongly
non-Gaussian series. This paper also derives statistical properties of the estimators
used for obtaining confidence intervals.

(b) Wavelet spectral analysis of 1/f processes

We now slightly change our point of view, and instead of variances over certain
scales we now examine the more general quantity: the spectral density or spectrum.
The spectrum is the Fourier transform of the autocovariance function of a stationary
process. For its proper definition in case of the (non-stationary) fBm, we again must
use the fGn, which has a power-law spectral density as follows,

fY (ω) = Lf (ω)|ω|1−2H , 0 < |ω|  t−1
0 ,

where, again, Lf (·) is a slowly varying function, now for ω → 0. If H > 1
2 , we observe

a singularity in zero frequency that is, again, an indicator for a strongly correlated
time-series, i.e. one with long memory.
As before, from the statistical point of view, there is a linear relation between

log{fY (ω)} and log(|ω|) for small enough |ω|, which allows us to base an estimator
for the spectral exponent α = 1 − 2H on an estimator for the spectrum fY . This
will, in fact, be one of the estimators σ̂2

Y or σ̃2
Y for the wavelet variance σ2

Y , which
is related to the spectrum fY by the equation (2.6) below. We summarize § 2 of
Abry et al . (1995) who clarify why wavelet is superior to traditional Fourier spectral
analysis for power law processes. The two methods may be compared by examining
the expectation of the wavelet variance estimator, σ̂2

Y (τj), and the expectation of the
average of short-time Fourier periodograms over segments of equal length of {Yt}. The
Fourier estimator is constructed in a similar way to the wavelet variance estimator,
except that Gabor-like basis functions (appropriately weighted exponentials) instead
of wavelets are used. In other words, the Fourier estimator is the time marginal
of a particular bilinear time–frequency distribution, the spectrogram, which is the
squared modulus of a Gabor or short-time Fourier transform. In this context, the
wavelet variance estimator is the time marginal of the scalogram, i.e. the squared
wavelet coefficients. The properties of the two estimators are different because of
the way that energy is distributed over the two different configurations of atoms
(Fourier, rectangular equal-area boxes centred at equispaced nodes; wavelets, the
famous constant-Q tiling with centres located on the usual wavelet hierarchy).
The expectation of the time marginal of the spectrogram can be written as the

convolution of the Fourier spectrum fY (ω) of {Yt} with the squared Fourier trans-
form of the moving window. Similarly, the expectation of the time marginal of the
scalogram, i.e. of σ̂2

Y (τj) (for reasons of simplicity we only refer to the inferior esti-
mated based on the DWT), is the convolution of fY (ω) with the squared modulus
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of the Fourier transform ψ̂jk(ω) of the wavelets in the DWT, i.e.

σ2
Y (τj) = Eσ̂2

Y (τj) =
2
T

∑
k

Ed̂2
jk = τ−1

j

∫ π

−π

fY (ω)|ψ̂jk(ω)|2 dω. (2.6)

Abry et al . (1995) show foremost that in a log–log relationship of equation (2.6),
the bias for estimating the spectral parameter α of fY becomes frequency indepen-
dent when using averaged scalograms instead of averaged spectrograms. This is a
consequence of the fact that in the Fourier domain, wavelets scale multiplicatively
with respect to frequency, a property that the fixed-window spectrograms do not
enjoy. Further considerations in Abry et al . (1995), such as those pertaining to the
efficiency of the estimators, support the wavelet-based approach for these processes.
Equation (2.6) also helps to further interpret the variation of the considered esti-

mators of σ2
Y (τj) in the example given in figure 1. As the spectrum fY (ω) of the

MA(3) process of this example has its power concentrated near to high frequencies,
and as the variance of these estimators are approximately proportional to the square
of their mean, it is clear from the integral in (2.6) that this variance increases with
frequency, i.e. if we go to finer scales in the plots of figure 1.
Further examples for processes with such a singular power-law behaviour near

zero frequency can be found (see Flandrin 1998), e.g. in the areas of atmospheric
turbulence (see, for example, Farge, this issue), hydrology, geophysical and financial
data, and telecommunications traffic (Abry et al . 1999), to name but a few. Whitcher
et al . (1998) detect, test and estimate time-series variance changes. Their work can
identify the scale at which the change occurs. Generalizations of these kind of tests to
time-varying autocovariance and spectral density for short-memory non-stationary
processes can be found in von Sachs & Neumann (1998).
In § 3 we discuss ideas of how to localize both the analysis and synthesis of the

global scale behaviour discussed in this section.

(c) Synthesis of long-memory processes using wavelets

In the above considerations on analysis of 1/f processes, we saw that wavelets
formed a key role. In reverse, it is not surprising that they are useful also for syn-
thesis, i.e. in the theory of modelling 1/f processes (see, again, Abry et al . 1999).
Indeed, it is possible to, for example, simulate 1/f processes using wavelets (see
Wornell & Oppenheim 1992). One method for simulating fGn is given by McCoy &
Walden (1996) as follows:

(a) compute the variances, Sj , of the required fGn processes by integrating its
spectrum over dyadic intervals [−2j ,−2j−1] ∪ [2j−1, 2j ];

(b) for each scale j, draw a sequence of 2−j independent and identically distributed
normal random variables djk;

(c) apply the inverse DWT to the {djk} coefficients to obtain an approximate
realization of a 1/f process.

Figure 2 shows two realizations from fGn processes using the McCoy &Walden (1996)
methodology.
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3. Wavelet processes: a particular time-scale model

(a) Local stationarity

Suppose that we have a time-series {Xt}t∈Z, and that we wish to estimate the vari-
ance σ2

t = var(Xt) over time. If the series is stationary, then σ2
t will be constant

and equal to σ2 and we can use the usual sum of squared deviations from the mean
estimator on a single stretch of the observed time-series X1, . . . , XT . As more data
become available (as T increases), the estimate of the variance σ̂2 improves. Alter-
natively, suppose that we know that the variance of the series changes at each time
point t, i.e. assume that var(Xt) = σ2

t for all t ∈ Z where none of the σ2
t are the

same. Here the series is non-stationary and we do not have much hope in obtaining
a good estimate of σ2

t since the only information we can obtain about σ
2
t comes from

the single Xt. As a third alternative, suppose the variance of a time-series changes
slowly as a function of time t. Then the variance around a particular time t∗ could
be estimated by pooling information from Xt close to t∗.
A similar situation occurs if the long-memory parameter H in the previous section

changes over time, i.e. H = H(t), then the Allan variance would also change over
time:

σ2
Y (t, τ) = E(|Ȳt(τ)− Ȳt−τ (τ)|2) ∼ τ2H(t)−2.

For a series with such a structure, we would hopefully observe

d̃2
j,k ≈ d̃2

j,k+1,

for the NDWT coefficients. To estimate the Allan variance we would need to con-
struct local averages. In other words, we would not sum over all empirical NDWT
coefficients but would perform adaptive averaging of the d̃2

jk over k for fixed scale j.
Time-series whose statistical properties are slowly varying over time are called

locally stationary. Loosely speaking, if you examine them at close range they appear
to be stationary and if you can collect enough data in their region of local stationarity
then you can obtain sensible estimates for their statistical properties, such as variance
(or autocovariance or the frequency spectrum).
One possibility for modelling time-series such as these is to assume that

var(d̃j,k) ≈ var(d̃j,k+1), (3.1)

so that we have some chance of identifying/estimating coefficients from one realiza-
tion of a time-series. More generally, an early idea for ‘local stationarity’, due to
Silverman (1957), proposes

cov(Xt, Xs) = c(t, s) ≈ m(1
2(s+ t))γ(s− t) := m(k)γ(τ), (3.2)

where k = 1
2(s+ t) and τ = t−s. This model says that the covariance behaves locally

as a typical stationary autocovariance but then varies from place to place depending
on k. The Silverman model reflects our own wavelet-specific model given in (3.5)
except that ours decomposes γ over scales using a wavelet-like basis. Other early
important work in this area can be found in Page (1952) and Priestley (1965). More
recently, Dahlhaus (1997) introduced an interesting model that poses estimation of
time-series statistical properties (such as variance) as a curve estimation problem
(which bestows great advantages when considering the performance of estimators
because it assumes a unique spectrum).
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Figure 3. ECG recording of a 66-day-old infant. Series is sampled at 1
16 Hz and is recorded

from 21:17:59 to 06:27:18. There are T = 2048 observations.

Figure 3 shows an example of a time-series that is not stationary. It shows the
electrocardiogram (ECG) recording of a 66-day-old infant. There are a number of
interesting scientific and medical issues concerning such ECG data, e.g. building and
interpreting models between ECG and other covariates such as infant sleep state
(see Nason et al . 1999). However, for the purposes of this article, we shall confine
ourselves to examining how the variance of the series changes as a function of time
and scale. Further analyses of this sort can be found in Nason et al . (1998).

(b) Locally stationary wavelet processes

(i) The processes model

A time-domain model for encapsulating localized scale activity was proposed by
Nason et al . (1999). They define the locally stationary wavelet (LSW) process by

Xt =
−1∑

j=−J

∑
k∈Z

wj,kψjk(t)ξjk, for t = 0, . . . , T − 1, (3.3)

where the {ξjk} are mutually orthogonal zero mean random variables, the ψjk(t)
are discrete non-decimated wavelets (as described in the appendix), and the wj,k

are amplitudes that quantify the energy contribution to the process at scales j and
location k. Informally, the processXt is built out of wavelets with random amplitudes.
The LSW construction is similar in some ways to the well-known construction of
stationary processes out of sinusoids with random amplitudes.
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Figure 4. EWS estimate using non-decimated Haar wavelet transform. (Simulation generated)
plot showing (estimated) EWS for concatenated Haar process. The horizontal axis shows ‘nor-
mal’ time k but could be labelled in rescaled time z = k/512.

(ii) Evolutionary wavelet spectrum and local variance

To quantify how the size of wj,k changes over time, we embed our model (3.3) into
the Dahlhaus (1997) framework. To model locally stationary processes we use our
assumption (3.1) to insist that w2

j,k ≈ w2
j,k+1, which forces w

2
j,k to change slowly over

k. Stationary processes can be included in this model by ensuring that w2
j,k is constant

with respect to k. A convenient measure of the variation of w2
j,k is obtained by

introducing rescaled time, z ∈ (0, 1), and defining the evolutionary wavelet spectrum
(EWS) by

Sj(z) = Sj(k/T ) ≈ w2
j,k, (3.4)

for k = 0, . . . , T−1. In the stationary case we lose the dependence on z (k) and obtain
the ‘wavelet spectrum’ or Allan variance given just after formula (2.5). One can see
that as more time-series observations are collected (as T increases), one obtains more
information about Sj(z) on a grid of values k/T , which makes the estimation of Sj(z)
a standard statistical problem.
The important thing to remember about the EWS is that

Sj(z) quantifies the contribution to process variance at scale j and time z.

In other words, a large value of Sj(z) indicates that there is a large amount of
oscillatory power operating at scale j around location z. For examples of this, see
figures 4 and 5.
For a non-stationary process, we would expect the variance of the process to vary

over time and so we would expect our model to exhibit a time-localized version
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Figure 5. EWS estimate using non-decimated Haar wavelet transform. Estimate of the evolu-
tionary spectrum Sj(z) for infant ECG series shown in figure 3 (just as figure 4 shows for the
simulated concatenated Haar process). The original time axis is shown although it is really
rescaled time in the interval (0, 1).

of (2.5), i.e. something like

var(Xk) =
∑

j

w2
j,k,

or, more precisely, (3.7) below. If one takes our process model (3.3) and forms the
autocovariance of Xt, then one (asymptotically) obtains an expression in terms of
the autocorrelation function of the wavelets. Let c(z, τ) define this localized autoco-
variance,

lim
T→∞

cov(X[zT ]−τ , X[zT ]+τ ) = c(z, τ) =
−1∑

j=−∞
Sj(z)Ψj(τ), (3.5)

where Ψj(τ) is the autocorrelation function of the discrete non-decimated wavelets
defined by (for Haar *

0

=

1 0 1  
)

Ψj(τ) =
∞∑

k=−∞
ψjk(0)ψjk(τ), (3.6)

for j < 0. The representation in (3.3) is not unique because of the nature of the
overdetermined non-decimated wavelet system. However, the autocovariance repre-
sentation in (3.5) is unique. Relation (3.5) is reminiscent of the Silverman (1957)
idea with Sj(·) playing the role of m(·) and Ψj(τ) the role of γ(τ), except that our
model separates the behaviour over scales. Relation (3.5) also allows us to define the
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localized variance at time z by

v(z) = c(z, 0) =
−1∑

j=−∞
Sj(z), (3.7)

i.e. the promised localized version of (2.5), note that Ψj(0) is always 1 for all scales
j. For stationary series, the localized autocovariance collapses to the usual autoco-
variance c(τ).
For estimation of the EWS we implement the idea of local averaging expressed in

§ 3 a. The EWSmay be estimated by a corrected wavelet periodogram, which is formed
by taking the NDWT coefficients, d̃jk, of the sample realization, squaring them,
and then performing a correction to disentangle the effect of the overdetermined
NDWT. Like the classical periodogram (see Priestley 1981), the corrected wavelet
periodogram is a noisy estimator of the EWS and needs to be smoothed to provide
good estimates. The smoothing could be carried out by any number of methods, but,
since we wish to be able to capture sharp changes in the EWS, we adopt wavelet
shrinkage techniques (Donoho et al . 1995; Coifman & Donoho 1995). Figure 5 shows
a smoothed corrected wavelet periodogram for the infant ECG data. For further
detailed analyses on this dataset see Nason et al . (1998).

(iii) Motivating example: Haar MA processes

The MA(1) process,
X

(1)
t = (εt − εt−1)/

√
2,

is an LSW process as in (3.3), where the amplitudes are equal to 1 for j = −1 and
zero otherwise, and the constructing wavelets ψjk are Haar non-decimated wavelets
as given in the appendix. The autocovariance function of X(1)

t is c(τ) = 1,−1
2 , 0 for

τ = 0,±1, otherwise, and this c is precisely the finest scale Haar autocorrelation
wavelet Ψ−1(τ). So this special Haar MA process satisfies (3.5) with S−j(z) = 0 for
all j < −1 and S−1(z) = 1 (and this agrees with (3.4) since the amplitudes are 1 for
j = −1 only, and zero otherwise). We already met the MA process X(2)

t in § 2 (its
Allan variance was plotted in figure 1). By the same argument, its autocovariance
function is, this time, the next-finest scale Haar autocorrelation wavelet Ψ−2(τ).
Similarly, we can continue in this way defining the rth order Haar MA(2r − 1)
process X(r)

t , which has Ψ−r(τ) for its autocovariance function for integers r > 0.
Each of the Haar MA processes is stationary, but we can construct a non-stationary
process by concatenating the Haar MA processes. For example, suppose we take
128 observations from each of X(1)

t , X(2)
t , X(3)

t and X(4)
t and concatenate them (a

realization from such a process is shown in Nason et al . (1998)). As a time-series of
512 observations, the process will not be stationary. The Haar MA processes have
S−j(z) = 0 for −j �= r and all z, and S−r(z) = 1 for z ∈ ([r − 1]/4, r/4), a plot of
which appears in figure 4 (remember z = k/512 is rescaled time).
The plot clearly shows that from time 1 to 128, the Haar MA(1) process is active

with variation active at scale −1 (scale 2−j = 2), then, at time 128, the MA(1)
process, X(1)

t , changes to the MA(3) process, X(2)
t , until time 256, and so on.

Indeed, the section from 128 to 256 (z ∈ (1
4 ,

1
2)) should be compared with figure 1,

which shows the Allan variance of X(2)
t , which would be equivalent to averaging over

the 128–256 time period. However, the EWS plot above does not show any power
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Figure 6. Estimate of local variation at fine scales for infant ECG series shown in figure 3 (solid
line). The dashed line shows the sleep state of the infant (visually determined by a trained
observer) ranging from 1 (quiet sleep), 2 (between 1 and 3), 3 (active sleep), 4 (awake). The
original time axis is shown although z is really rescaled time in the interval (0, 1).

at scales j = −1 (τj = 2) and j = −3 (τj = 8) unlike the Allan variance plot.
The absence of power in the EWS plot is because of the disentanglement mentioned
in (ii).

(iv) Application to infant ECG

Figure 5 shows an estimate of the evolutionary wavelet spectrum for the infant
ECG data. It can be useful to aggregate information over scales. Figure 6 displays
the variation in the ECG series at fine scales. The fine-scale plot was obtained by
summing over contributions from scales −1 to −4 in the smoothed corrected wavelet
periodogram (ca. 32 s, 1, 2 and 4 min time-scales). The dashed line in figure 6 shows
another covariate: the sleep state of the infant as judged by a trained observer. It is
clear that there is a correlation between the ECG and the sleep state that can be
exploited. There is no real clear link between the sleep state and the EWS at coarse
and medium scales. However, a plot of an estimate of the localized variance v (not
shown here) gives some idea of overall sleep behaviour.
The EWS is a useful tool in that it provides insight into the time-scale behaviour

of a time-series (much in the same way as a periodogram gives information about
power in a stationary time-series at different frequencies). However, the EWS has
additional uses: Nason et al . (1999) have also used the EWS to build models between
sleep state (expensive and intrusive to measure) and ECG (cheap and easy), which
allow estimates of future sleep state values to be predicted from future ECG values.
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Appendix A. Discrete non-decimated wavelets

Discrete non-decimated wavelets are merely the vectors of ‘filter’ coefficients that
appear in the matrix representation of the DWT. We shall define those that appear
at scale −j to be ψj . So, for example, with Haar

ψ−1 =
(

1√
2
,− 1√

2

)
, ψ−2 = (1

2 ,
1
2 ,−1

2 ,−1
2),

and so on for other scales. The ψj for j = −1, . . . ,−J can be obtained for any
Daubechies compactly supported wavelet using the formulae

h̃j−1,n =
∑

k

hn−2kh̃j,k, ψj,n =
∑

k

gn−2kh̃j,k,

where {hk} and {gk} are the usual Daubechies quadrature mirror filters, and
h̃−1,k = hk.

For non-decimated wavelets, ψjk(τ) is the kth element of the vector ψj(k−τ), i.e. ψjk

shifted by integers τ . The key point for non-decimated discrete wavelets is that they
can be shifted to any location and not just by shifts of 2−j (as in the DWT). Hence,
non-decimated discrete wavelets are no longer orthogonal but are an overcomplete
collection of shifted vectors. The NDWT can be computed through a fast algorithm
(similar to the Mallat pyramid algorithm described in Silverman, this issue), which
takes a computational effort of order n logn for a dataset of length n. See Nason &
Silverman (1995) for a more detailed description of the NDWT.
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